
A Fault Tolerance mechanism
for Hybrid

Scientific Workflows

Alberto Mulone, PhD student, University of Turin
HiPES - EuroPar, Madrid, 26 August 2024

Alberto Mulone Doriana Medić Marco Aldinucci

Workflow

A workflow is an abstraction that models a complex and modular working
process as a set of steps and their inter-dependencies.

Hybrid workflows

A hybrid workflow is a workflow
whose steps can span multiple,
heterogeneous, and independent
computing infrastructures.

Use case: Variant Calling Pipeline

A. Mulone, S. Awad, D. Chiarugi and M. Aldinucci,
"Porting the Variant Calling Pipeline for NGS data in cloud-HPC environment,"
2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC),
Torino, Italy, 2023, pp. 1858-1863, doi: 10.1109/COMPSAC57700.2023.00288.

https://doi.org/10.1109/COMPSAC57700.2023.00288

Use case: Variant Calling Pipeline

VM cloud
(96 cores)

Hybrid
execution
(cloud+HPC)

Failures: soft error

Application raises
an exception

Input data Output data

Failures: fail-stop error

Facility shutdown

Input data Output data

Failures: fail-stop error

Data lost

Ephemeral volume

Input data Output data

Facility shutdown

Fault tolerance
A workflow manager is fault tolerant when it can continue the execution correctly even if a
failure occurs.

Our contribution

if input data are available, then retry failed step
otherwise rollback of steps which output data are lost

Recovery of the failure is delegated to a new sub-workflow. This sub-workflow is called
recovery-workflow.

A synchronization mechanism is necessary to manage dependencies across concurrent
recovery-workflows.

Formalization: grammar
Workflow syntax

W ::= ⟨l, Dl, td⟩ ‖ (W1, W2)

t ::= µ ∥ t1.t2 ∥ (t1 | t2) ∥ (t1 + t2) ∥ ▷ t ∥ 0

µ ::= exec(s,I, O) ∥ tran(v, l2) ∥ tran(v, l1) ∥
rec(x)

v ::= d ∥ ms ∥ md,l ∥ okms ∥ okd ∥ err (x)

x ::= s ∥ D, l ∥ d, l ∥ ms, l

Formalization: grammar
Workflow syntax

W ::= ⟨l, Dl, td⟩ ‖ (W1, W2)

Formalization: grammar
Workflow syntax

W ::= ⟨l, Dl, td⟩ ‖ (W1, W2)

where Dl is
Dl = { tW, M(si), d, msi }

● tW represents all traces in the workflow
● M(si) is the mapping steps-locations
● d is the dataset
● msi are the messages that driver sends to locations

Formalization: grammar
Workflow syntax

W ::= ⟨l, Dl, td⟩ ‖ (W1, W2)

t ::= µ ‖ t1.t2 ‖ (t1 | t2) ‖ (t1 + t2) ‖ ▷ t ‖ 0

Formalization: grammar
Workflow syntax

W ::= ⟨l, Dl, td⟩ ‖ (W1, W2)

t ::= µ ‖ t1.t2 ‖ (t1 | t2) ‖ (t1 + t2) ‖ ▷ t ‖ 0

● Actions: µ
● Operators: “.”, “|”, “+”
● Empty trace 0
● Pointer denoting which is the current execution of

the trace t: ▷ t

Formalization: grammar
Workflow syntax

W ::= ⟨l, Dl, td⟩ ‖ (W1, W2)

t ::= µ ‖ t1.t2 ‖ (t1 | t2) ‖ (t1 + t2) ‖ ▷ t ‖ 0

µ ::= exec(s,I, O) ‖ tran(v, l2) ‖ tran(v, l1) ‖
rec(x)

Formalization: grammar
Workflow syntax

W ::= ⟨l, Dl, td⟩ ‖ (W1, W2)

t ::= µ ‖ t1.t2 ‖ (t1 | t2) ‖ (t1 + t2) ‖ ▷ t ‖ 0

µ ::= exec(s, I, O) ‖ tran(v, l2) ‖ tran(v, l1) ‖
rec(x)

v ::= d ‖ ms ‖ md,l ‖ okms ‖ okd ‖ err (x)

Formalization: grammar
Workflow syntax

W ::= ⟨l, Dl, td⟩ ‖ (W1, W2)

t ::= µ ‖ t1.t2 ‖ (t1 | t2) ‖ (t1 + t2) ‖ ▷ t ‖ 0

µ ::= exec(s,I, O) ‖ tran(v, l2) ‖ tran(v, l1) ‖
rec(x)

v ::= d ‖ ms ‖ md,l ‖ okms ‖ okd ‖ err (x)

x ::= s ‖ D, l ‖ d, l ‖ ms, l

Formalization: rule actions

Formalization: recovery rule actions

Example

Example

Example

Experiment

● Fault tolerance mechanism
implemented in StreamFlow (a
hybrid WMS)

● Kubernetes with 4 workers
● Injected fail-stop errors on

Merge step

Conclusions

Mixed different fault tolerance mechanisms

Introduced a semantics for fault tolerant hybrid workflows

Implemented the mechanism in StreamFlow, a hybrid
workflow system

Future works

Deep performance study about the implemented
mechanism in StreamFlow

Extend the semantics with workflow loop

Support non-deterministic workflows

