
GVE-LPA: Fast Label Propagation Algorithm (LPA) for
Community Detection in the Shared Memory Setting

Subhajit Sahu,1 Kishore Kothapalli,1 Dip Sankar Banerjee.2

1. IIIT Hyderabad, India

2. IIT Jodhpur, India

A graph is an abstraction for representing
data and relationships between them.

Set of vertices and inter-connecting edges.

- Web graphs

- Social networks

- Road networks

Graphs are everywhere

Haque & Andrejevic (2021)

● Introduction
● Related work
● Approach
● Evaluation
● Conclusion

Identifying the inherent structure of a graph,
which implies its function.

In contrast to classification / supervised
learning, which has known fixed classes.

Applicable in many problems.

- Customer segmentation

- Image segmentation

- Anomaly detection

- Graph compression, Partitioning

- Message compression (IoT)

What is Community Detection?

1

2 3

Applications - Customer / content segmentation

Applications - Gene / protein function prediction

Node:

- Protein

Edge:

- Protein interaction

Applications - Document classification

Node:

- Document

Edge:

- Shared words / phrases

Applications (contd.)

Drug discovery:

Identify groups of similar compounds or
target proteins, facilitating the discovery of
new therapeutic agents.

Health domain:

Understanding the dynamics of groups
susceptible to epidemic diseases, detecting
diseases like lung cancer, and categorizing
tumor types using genomic datasets.

Understand the structure and evolution of
metabolic networks, Gene Regulatory
Networks (GRNs), and Lateral Gene Transfer
(LGT) networks.

Analysis of human brain networks.

Ecological studies:

Determine if food webs are organized into
compartments, where species within the
same compartment frequently interact
among themselves but have fewer
interactions with species in different
compartments.

Others:

Vertex reordering, graph coarsening,
sectionalizing power system (faulty).

What are communities?

A community is a subset of a network whose
members are highly connected, but loosely
connected to others outside their
community.

Neither the number of output communities
nor their size distribution is known a priori.

Different community detection methods can
return different communities these
algorithms are heuristic-based.

Community types:
- Disjoint
- Hierarchical
- Overlapping
- Seed-set expansion

Heuristics:
- Random walk
- Label propagation
- Divisive
- Agglomerative

How do you define community quality?

Newman and Girvan introduce modularity
metric - a fitness function that measures
relative density of edges inside vs outside
communities.

Between −0.5 (non-modular clustering) and
1.0 (fully modular clustering).

Optimizing this theoretically results in the
best possible grouping.

The problem of community detection is then
reduced to the problem of modularity
maximization which is NP-hard.

● Introduction
● Related work
● Approach
● Evaluation
● Conclusion

Label Propagation Algorithm (LPA); Raghavan et al. (2007)

This is an implementation of a popular label-propagation based community detection
algorithm called Raghavan Albert Kumara (RAK).

Here, every node is initialized with a unique label and at every step each node adopts the
label that most of its neighbors currently have.

In this iterative process densely connected groups of nodes form a consensus on a unique
label to form communities. The algorithm converges when n% of vertices don’t change
their community membership (tolerance).

Semi-supervised learning.

Community Overlap PRopagation Algorithm (COPRA); Gregory (2010)

- Each vertex initializes as its own community (belonging=1).

- Each iteration, a vertex collects labels from its neighborhood.

- It excludes a vertex's own labels, although not explicitly mentioned in paper.

- The collected labels are scaled by edge weights for weighted graph.

- Each vertex picks labels above a certain threshold.

- This threshold is inversely proportional to the max. number of labels.

- If all labels are below threshold, pick a random best label.

- I make a vertex join its own community if it has no labels (not mentioned).

- Selected labels are normalized such that belonging coefficient sums to 1.

- Repeat from 2 until convergence.

Speaker-Listener Propagation Algorithm (SLPA); Xie & Szymanski (2012)

- Each vertex is initialized such that it remembers itself as popular.

- Each neighbor speaks one of the random labels in its memory.

- The vertex (listener) adds the most popular label to its memory.

- Repeat from 2 until a fixed number of iterations is performed (labels - 1).

- I allow early convergence if at least n% of vertices remember their previous label.

- For each vertex, i pick the most popular label in its memory as its community.

LabelRank; Xie & Szymanski (2013)

LabelRank is an iterative algorithm that is based on the concept of propagation of weighted
labels on a weighted (directed) network, where the highest weight label determines the
community membership of each vertex.

Our implementation of LabelRank differs from the original algorithm in that there is a fixed
upper limit on the number of labels per vertex (labelset capacity). Therefore we do not use
the cutoff operator (which removes low-weighted labels), but instead trim-off labels if they
do not fit within labelset capacity. Labels are sorted by weight such that only low-weighted
labels are eliminated.

Csardi and Nepusz (Complex systems 2006) - igraph LPA (seq.)

- Shuffles node order each iteration.

- Track dominant labels, select one randomly.

- Clear hashtable by iterating neighbors.

- No restrict iteration to a set of active nodes.

- Alternate label updating and control iters.

- Converged if labels of all nodes dominant.

[Can get expensive]

[Given multiple dominant labels; RNG slow]

[Control iter.: check if current label of node is not dominant]

[Large no. of iterations; minimal gain in quality]

Traag and Šubelj (Scientific Reports 2023) - FLPA (seq.)

- Does not shuffle node processing order.

- Uses deque for managing active nodes.

- Converged when deque empty.

- Selects random dominant label.

- Converged when no active nodes.

- Label changes? Process neighbors diff. label.

[Given multiple dominant labels; RNG slow]

[Large no. of iterations; minimal gain in quality]

Staudt and Meyerhenke (IEEE TPDS 2016)

- Avoid randomizing processing order (use ||).

- Unnecessary to recompute labels of nodes.

- Restrict iteration to a set of active nodes.

- Asynchronous updating of labels.

- OpenMP guided thread scheduling.

Also propose || Louvain + with refinement,
and ensemble processing (merge base algs.).

[Existing; cost; negligible effect]

[Vertex pruning]

[Within threshold; majority iterations of very small frac. of high-deg. nodes]

[Has race conditions; beneficial – random variations, solution diversity; avoid
oscillations on bipartite structures]

[Handle power-law graphs; assign node ranges of decreasing size to threads]

[Re-evaluate node assignments in view of changes in the next coarser level]

[In ML, weak classifiers are combined to form a strong classifier, find
commonality of multiple base algs., coarsen, and apply and final alg.]

Staudt, Sazonovs, and Meyerhenke (Network Science 2016) - NetworKit LPA

- static, 1 || label initialization.

- std::map for weights linked to labels.

- Convergence tolerance of 10-5.

- Atomically count updated vertices.

- Boolean vector to track active nodes.

[False sharing - consecutive writes]

[Quite inefficient]

[We use lower with similar quality]

[Contention; can use || reduce instead]

[8-bit integer flag more efficient]

Critical review

We have experimented with COPRA,
SLPA, and LabelRank, but found LPA to be
the most performant, while yielding
communities of equivalent quality.

1. Computational bottleneck.

2. Energy efficiency.

3. Large memory sizes.

4. Existing studies do not study efficient
data structures.

5. Optimizations are scattered.

● Introduction
● Related work
● Approach
● Evaluation
● Conclusion

Our Parallel LPA

- Async version of LPA (distinct sections - faster).

- Dedicated CF hashtable per thread: 2.6x.

- OpenMP dynamic loop scheduling (2048): 1.27X.

- Limit to 20 iterations: small.

- Tolerance of 0.05: small.

- Vertex pruning (flag based): 1.17X.

- Strict LPA (vs non-strict): 1.5X.

Our Parallel LPA

- Async version of LPA (distinct sections - faster).

- Dedicated CF hashtable per thread: 2.6x.

- OpenMP dynamic loop scheduling (2048): 1.27X.

- Limit to 20 iterations: small.

- Tolerance of 0.05: small.

- Vertex pruning (flag based): 1.17X.

- Strict LPA (vs non-strict): 1.5X.

● Introduction
● Related work
● Approach
● Evaluation
● Conclusion

System:

2 x Intel Xeon Gold 6226R @ 2.9 GHz (16 cores)

376 GB RAM, CentOS 8

GCC 8.5, OpenMP 4.5

32-bit edge weights, 64-bit computation; 64 th.

Dataset: |V|: 3.1M to 214M, |E|: 25M to 3.8B

Experimental setup

System:

2 x Intel Xeon Gold 6226R @ 2.9 GHz (16 cores)

376 GB RAM, CentOS 8

GCC 8.5, OpenMP 4.5

32-bit edge weights, 64-bit computation; 64 th.

Dataset: |V|: 3.1M to 214M, |E|: 25M to 3.8B

Experimental setup

Performance comparison - Runtime

139x FLPA

97000x igraph LPA

40x NetworKit LPA

1.4B edges/s Ours

Performance comparison - Speedup

139x FLPA

97000x igraph LPA

40x NetworKit LPA

Performance comparison - Modularity

6.6% FLPA

0.2% igraph LPA

-4.1% NetworKit LPA

Strong scaling

With 32 threads:

GVE-LPA: 13.5x

GVE-Louvain: 10.4x

With doubling of

threads:

GVE-LPA: 1.7x

GVE-Louvain: 1.6x

● Introduction
● Related work
● Approach
● Evaluation
● Conclusion

Conclusion

● Efficient DSA are important for HPC - Hashtable.

○ Utilize parallel primitives where necessary.

○ Minimize repeated memory allocation/deallocation.

○ Consider effects like false sharing.

Acknowledgement and Thanks

We extend our sincere thanks to HiPES 2024 reviewers, conference chairs, and to you for listening.

Have a memorable day!

Dr. Kishore Kothapalli
IIIT Hyderabad

Dr. Dip Sankar Banerjee
IIT Jodhpur Source code

