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A graph is an abstraction for representing 
data and relationships between them.

Set of vertices and inter-connecting edges.

- Web graphs

- Social networks

- Road networks

Graphs are everywhere

Haque & Andrejevic (2021)
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Identifying the inherent structure of a graph, 
which implies its function.

In contrast to classification / supervised 
learning, which has known fixed classes.

Applicable in many problems.

- Customer segmentation

- Image segmentation

- Anomaly detection

- Graph compression, Partitioning

- Message compression (IoT)

What is Community Detection?
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Applications - Customer / content segmentation



Applications - Gene / protein function prediction

Node:

- Protein

Edge:

- Protein interaction



Applications - Document classification

Node:

- Document

Edge:

- Shared words / phrases



Applications (contd.)

Drug discovery:

Identify groups of similar compounds or 
target proteins, facilitating the discovery of 
new therapeutic agents.

Health domain:

Understanding the dynamics of groups 
susceptible to epidemic diseases, detecting 
diseases like lung cancer, and categorizing 
tumor types using genomic datasets.

Understand the structure and evolution of 
metabolic networks, Gene Regulatory 
Networks (GRNs), and Lateral Gene Transfer 
(LGT) networks.

Analysis of human brain networks.

Ecological studies:

Determine if food webs are organized into 
compartments, where species within the 
same compartment frequently interact 
among themselves but have fewer 
interactions with species in different 
compartments.

Others:

Vertex reordering, graph coarsening, 
sectionalizing power system (faulty).



What are communities?

A community is a subset of a network whose 
members are highly connected, but loosely 
connected to others outside their 
community.

Neither the number of output communities 
nor their size distribution is known a priori.

Different community detection methods can 
return different communities these 
algorithms are heuristic-based.

Community types:
- Disjoint
- Hierarchical
- Overlapping
- Seed-set expansion

Heuristics:
- Random walk
- Label propagation
- Divisive
- Agglomerative



How do you define community quality?

Newman and Girvan introduce modularity 
metric - a fitness function that measures 
relative density of edges inside vs outside 
communities.

Between −0.5 (non-modular clustering) and 
1.0 (fully modular clustering).

Optimizing this theoretically results in the 
best possible grouping.

The problem of community detection is then 
reduced to the problem of modularity 
maximization which is NP-hard.
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Label Propagation Algorithm (LPA); Raghavan et al. (2007)

This is an implementation of a popular label-propagation based community detection 
algorithm called Raghavan Albert Kumara (RAK).

Here, every node is initialized with a unique label and at every step each node adopts the 
label that most of its neighbors currently have.

In this iterative process densely connected groups of nodes form a consensus on a unique 
label to form communities. The algorithm converges when n% of vertices don’t change 
their community membership (tolerance).

Semi-supervised learning.



Community Overlap PRopagation Algorithm (COPRA); Gregory (2010)

- Each vertex initializes as its own community (belonging=1).

- Each iteration, a vertex collects labels from its neighborhood.

- It excludes a vertex's own labels, although not explicitly mentioned in paper.

- The collected labels are scaled by edge weights for weighted graph.

- Each vertex picks labels above a certain threshold.

- This threshold is inversely proportional to the max. number of labels.

- If all labels are below threshold, pick a random best label.

- I make a vertex join its own community if it has no labels (not mentioned).

- Selected labels are normalized such that belonging coefficient sums to 1.

- Repeat from 2 until convergence.



Speaker-Listener Propagation Algorithm (SLPA); Xie & Szymanski (2012)

- Each vertex is initialized such that it remembers itself as popular.

- Each neighbor speaks one of the random labels in its memory.

- The vertex (listener) adds the most popular label to its memory.

- Repeat from 2 until a fixed number of iterations is performed (labels - 1).

- I allow early convergence if at least n% of vertices remember their previous label.

- For each vertex, i pick the most popular label in its memory as its community.



LabelRank; Xie & Szymanski (2013)

LabelRank is an iterative algorithm that is based on the concept of propagation of weighted 
labels on a weighted (directed) network, where the highest weight label determines the 
community membership of each vertex.

Our implementation of LabelRank differs from the original algorithm in that there is a fixed 
upper limit on the number of labels per vertex (labelset capacity). Therefore we do not use 
the cutoff operator (which removes low-weighted labels), but instead trim-off labels if they 
do not fit within labelset capacity. Labels are sorted by weight such that only low-weighted 
labels are eliminated.



Csardi and Nepusz (Complex systems 2006) - igraph LPA (seq.)

- Shuffles node order each iteration.

- Track dominant labels, select one randomly.

- Clear hashtable by iterating neighbors.

- No restrict iteration to a set of active nodes.

- Alternate label updating and control iters.

- Converged if labels of all nodes dominant.

[Can get expensive]

[Given multiple dominant labels; RNG slow]

[Control iter.: check if current label of node is not dominant]

[Large no. of iterations; minimal gain in quality]



Traag and Šubelj (Scientific Reports 2023) - FLPA (seq.)

- Does not shuffle node processing order.

- Uses deque for managing active nodes.

- Converged when deque empty.

- Selects random dominant label.

- Converged when no active nodes.

- Label changes? Process neighbors diff. label.

[Given multiple dominant labels; RNG slow]

[Large no. of iterations; minimal gain in quality]



Staudt and Meyerhenke (IEEE TPDS 2016)

- Avoid randomizing processing order (use ||).

- Unnecessary to recompute labels of nodes.

- Restrict iteration to a set of active nodes.

- Asynchronous updating of labels.

- OpenMP guided thread scheduling.

Also propose || Louvain + with refinement, 
and ensemble processing (merge base algs.).

[Existing; cost; negligible effect]

[Vertex pruning]

[Within threshold; majority iterations of very small frac. of high-deg. nodes]

[Has race conditions; beneficial – random variations, solution diversity; avoid 
oscillations on bipartite structures]

[Handle power-law graphs; assign node ranges of decreasing size to threads]

[Re-evaluate node assignments in view of changes in the next coarser level]

[In ML, weak classifiers are combined to form a strong classifier, find 
commonality of multiple base algs., coarsen, and apply and final alg.]



Staudt, Sazonovs, and Meyerhenke (Network Science 2016) - NetworKit LPA

- static, 1 || label initialization.

- std::map for weights linked to labels.

- Convergence tolerance of 10-5.

- Atomically count updated vertices.

- Boolean vector to track active nodes.

[False sharing - consecutive writes]

[Quite inefficient]

[We use lower with similar quality]

[Contention; can use || reduce instead]

[8-bit integer flag more efficient]



Critical review

We have experimented with COPRA, 
SLPA, and LabelRank, but found LPA to be 
the most performant, while yielding 
communities of equivalent quality.

1. Computational bottleneck.

2. Energy efficiency.

3. Large memory sizes.

4. Existing studies do not study efficient 
data structures.

5. Optimizations are scattered.
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Our Parallel LPA

- Async version of LPA (distinct sections - faster).

- Dedicated CF hashtable per thread: 2.6x.

- OpenMP dynamic loop scheduling (2048): 1.27X.

- Limit to 20 iterations: small.

- Tolerance of 0.05: small.

- Vertex pruning (flag based): 1.17X.

- Strict LPA (vs non-strict): 1.5X.
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System:

2 x Intel Xeon Gold 6226R @ 2.9 GHz (16 cores)

376 GB RAM, CentOS 8

GCC 8.5, OpenMP 4.5

32-bit edge weights, 64-bit computation; 64 th.

Dataset: |V|: 3.1M to 214M, |E|: 25M to 3.8B

Experimental setup
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Performance comparison - Runtime

139x FLPA

97000x igraph LPA

40x NetworKit LPA

1.4B edges/s Ours



Performance comparison - Speedup

139x FLPA

97000x igraph LPA

40x NetworKit LPA



Performance comparison - Modularity

6.6% FLPA

0.2% igraph LPA

-4.1% NetworKit LPA



Strong scaling

With 32 threads:

GVE-LPA: 13.5x

GVE-Louvain: 10.4x

With doubling of 

threads:

GVE-LPA: 1.7x

GVE-Louvain: 1.6x
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Conclusion

● Efficient DSA are important for HPC - Hashtable.

○ Utilize parallel primitives where necessary.

○ Minimize repeated memory allocation/deallocation.

○ Consider effects like false sharing.
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